
LLNL-TR-669265

Limited-memory adaptive
snapshot selection for proper
orthogonal decomposition

G. M. Oxberry, T. Kostova-Vassilevska, B. Arrighi,
K. Chand

April 2, 2015

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

LIMITED-MEMORY ADAPTIVE SNAPSHOT SELECTION FOR

PROPER ORTHOGONAL DECOMPOSITION∗

GEOFFREY M. OXBERRY† , TANYA KOSTOVA-VASSILEVSKA‡ , BILL ARRIGHI§ , AND

KYLE CHAND¶

Abstract. Reduced order models are useful for accelerating simulations in many-query contexts,
such as optimization, uncertainty quantification, and sensitivity analysis. However, offline training
of reduced order models can have prohibitively expensive memory and floating-point operation costs
in high-performance computing applications, where memory per core is limited. To overcome this
limitation for proper orthogonal decomposition, we propose a novel adaptive selection method for
snapshots in time that limits offline training costs by selecting snapshots according an error control
mechanism similar to that found in adaptive time-stepping ordinary differential equation solvers.
The error estimator used in this work is related to theory bounding the approximation error in time
of proper orthogonal decomposition-based reduced order models, and memory usage is minimized by
computing the singular value decomposition using a single-pass incremental algorithm. Results for a
viscous Burgers’ test problem demonstrate convergence in the limit as the algorithm error tolerances
go to zero; in this limit, the full order model is recovered to within discretization error. The resulting
method can be used on supercomputers to generate proper orthogonal decomposition-based reduced
order models, or as a subroutine within hyperreduction algorithms that require taking snapshots in
time, or within greedy algorithms for sampling parameter space.

Key words. proper orthogonal decomposition, reduced order model, snapshot, incremental
singular value decomposition

AMS subject classifications. 15A21, 65F30, 65L05

1. Introduction. This paper describes a method for constructing proper orthog-
onal decomposition-based reduced order models (ROMs) from simulations of transient
full order models (FOMs), ignoring parameter dependence. The proposed method re-
duces the offline costs of ROM snapshot selection and basis computation in both
memory and floating point operations relative to existing methods in the literature.
It is intended to be used in constructing ROMs from large-scale FOM simulations run
on supercomputers. As such, it minimizes memory requirements for POD algorithms.
It can be used as a component of a procedure for selecting snapshots from simulations
of transient FOMs with parameters (for example, the greedy approach in [23]) in or-
der to build POD reduced order models (ROMs) for applications such as optimization
[52], uncertainty quantification, sensitivity analysis, parameter studies, and design of
(computational) experiments. To motivate the need for such an algorithm, a brief
survey of POD snapshot selection methods is presented; for detailed descriptions of
POD, see [2, 48, 5].

1.1. Notation. In this document, scalar variables will be denoted in italics by
either Roman or Greek letters. Vectors and vector-valued functions will be denoted

∗This work was performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344 (LLNL-TR-669265). This
work was supported by LDRD grant 13-ERD-031 from Lawrence Livermore National Laboratory.

†Computational Engineering Division, Lawrence Livermore National Laboratory, Livermore, CA,
94550 (oxberry1@llnl.gov, corresponding author).

‡Center for Applied Scientific Computing, Lawrence Livermore National Lab, Livermore, CA,
94550 (vassilevska1@llnl.gov).

§Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore,
CA, 94550 (arrighi2@llnl.gov).

¶Center for Applied Scientific Computing, Lawrence Livermore National Lab, Livermore, CA,
94550 (chand1@llnl.gov).

1

mailto:oxberry1@llnl.gov
mailto:vassilevska1@llnl.gov
mailto:arrighi2@llnl.gov
mailto:chand1@llnl.gov

2 Limited memory POD

by lowercase bold letters. Matrices will be denoted by uppercase bold letters. For a
given matrix A, R(A) denotes the range of A. The 2-norm of a vector1 is denoted
by ‖ · ‖, and the infinity-norm of a vector is denoted by ‖ · ‖∞.

It will be convenient in several places to construct diagonal matrices from vectors;
the function diag : R

m → R
m×m takes as input a vector and outputs a square,

diagonal matrix with that vector’s entries on its main diagonal as follows: if a =
(a1, a2, . . . , am)T, then

diag(a) =

a1
a2

. . .

am

.

1.2. Proper Orthogonal Decomposition. Consider the ordinary differential
equation (ODE)

u̇(t) = f(t,u(t)); u(0) = u0 ∈ R
m(1.1)

defining the FOM. The discrete version of POD2 [48] takes as input a matrix
U ∈ R

m×n defined by

U =
[

u1 − ū u2 − ū . . . un − ū
]

,(1.2)

where {uj − ū}nj=1 ⊂ R
m are the snapshots, and ū ∈ R

m is a time-independent
offset. It is assumed in this paper that snapshots are to be collected from a numerical
solution to the FOM defined by equation (1.1)3 and that the inner product used in
POD is the standard Euclidean inner product on R

n.4

Let U = V diag(s)W T be an SVD of U such that the elements of s are arranged
in nonincreasing order of magnitude. For given k, POD defines a basis matrix B

consisting of the first k columns of V (i.e., the k left singular vectors corresponding
to the k greatest singular values of U) and uses this matrix to define a ROM via
projection

˙̃u(t) = BT f(t,Bũ(t) + ū); ũ(0) = BT(u0 − ū).(1.3)

1Here, the 2-norm is used because we also use the Euclidean inner product when calculating the
POD basis. When using an alternate inner product, the norm defined by that inner product should
be used instead. The use of the infinity-norm is for ROM error control, and is unrelated to the choice
of inner product for POD.

2The continuous version of POD is out of the scope of this article; consult [5] for a description.
3These snapshots need not come from simulation data; experimental data has been used, for

instance, in fluid mechanics [1]. However, the focus of this work is on gathering data from numerical
solutions, as this case is common.

4For a development of POD that relaxes this assumption on the inner product, see [46]. In
essence, instead of calculating the eigenvalues and eigenvectors of UUT via the singular value de-
composition (SVD), changing the inner product means calculating the eigenvalues and eigenvectors

of Σ1/2UUT Σ1/2, where Σ is a symmetric positive definite matrix induced by the inner product;
in other words, we would compute the SVD of Σ1/2U instead, and the methods proposed here would
still apply.

Limited memory POD 3

Upon solving equation (1.3), an approximation to the solution u of equation (1.1)
is recovered via lifting (or interpolation, or prolongation)5:

v(t) = Bũ(t) + ū.(1.4)

The motivation for using a ROM such as (1.3) is to approximate well the FOM
solution u by the lifted ROM solution v through the assumption that u lies close (in
some sense) to the affine subspace R(B)+ ū. The dimension k of the POD basis used
to define the ROM is up to the user. In general (though not always [46]), increasing the
basis size decreases the error and increases both the number of arithmetic operations
and amount of memory required to calculate a solution to the ROM. A value of k
is chosen to balance the trade-off between accuracy and computational costs; typical
choices made to preserve accuracy involve arguments based on an energy criterion
(e.g., sum of largest k singular values makes up 95% of the sum of all singular values)
or an error criterion (e.g., the (k+1)th singular value is less than 10−5). In contrast,
typical choices of k based on computational requirements set k so that solving the
ROM is possible within limits on time and memory (e.g., set k = 100, based on these
limits). The offset ū can be interpreted as a base point of the affine subspace (linear
manifold) R(B)+ ū, and is chosen to translate the ROM initial conditions. Common
values are 0, the mean of the set {uj}nj=1, or the initial condition u0.

The process of constructing a ROM is typically described as the “offline” ROM
training phase, in contrast to solving the ROM in what is called the “online” phase.
Until recently, most analysis of ROM computational costs neglected the cost of the
offline stage and focused almost exclusively on the online stage, reasoning that offline
ROM costs could be amortized for many-query applications over a sufficiently large
number of inexpensive online ROM solves performed in place of expensive FOM solves.
In practice, resources for the offline training phase are constrained. There are strict
limitations on the amount of memory and computational time (or, as a proxy, number
of floating-point operations) available for ROM training. These resource constraints
must be balanced against controlling the ROM approximation error in the online
phase. The remainder of the introduction discusses these three issues – memory
costs, floating-point operation costs, and error control – followed by the contributions
of this work.

1.3. Offline memory and floating-point operation costs. The SVD algo-
rithm used to compute the basis from the selected snapshots is usually the dominant
contribution to the memory costs of POD.6 Typical approaches for calculating the
SVD as part of POD use conventional dense algorithms (see [21] for a comprehensive
bibliography). Since these approaches require storing the whole snapshot matrix U

in memory, these approaches will fail in the limit of large numbers of snapshots due
to insufficient memory. Out-of-core dense SVD variants are undesirable due to in-
creased latency of hard disks. Sparse direct7 approaches to calculating the SVD [44]

5Terminology varies. Interpolation and prolongation follow by analogy to multigrid methods;
see also the discrete empirical interpolation method [15]. Lifting follows by analogy to methods in
optimization that re-express constraints in higher-dimensional spaces.

6Similar considerations apply when calculating the POD basis vectors using algorithms for calcu-
lating eigendecompositions; although this paper focuses on incremental SVD methods, incremental
eigenspace methods [26, 27] could be used when eigendecompositions are preferred.

7Here, “direct” – as opposed to iterative – refers to the process used to generate a bidiagonal
matrix; in any SVD, the reduction of this bidiagonal matrix to diagonal form to calculate the singular
values is iterative.

4 Limited memory POD

are inapplicable, since the snapshot matrix U is not typically sparse. Iterative ap-
proaches to calculating the SVD typically calculate the largest k′ singular values and
the corresponding singular vectors (again, see [21] for a comprehensive bibliography);
to use these methods to generate a POD basis, the largest k′ = k singular values
and their corresponding left singular vectors must be calculated. However, k is not
necessarily known a priori, so iterative approaches cannot be used in many practical
cases.8 Furthermore, iterative approaches would still require storing all snapshots in
the snapshot matrix simultaneously, since it is unlikely that the action of the snapshot
matrix (and its transpose) could be calculated in matrix-free fashion.

Recently, Paul-Dubois-Taine and Amsallem ([42], Section 3.2.5) propose two dif-
ferent methods for compressing the SVD by partitioning the matrix U into blocks of
columns of U, computing a9 truncated SVD of U, and then combining these trun-
cated SVDs to obtain an approximate truncated SVD for each of these blocks. They
apply their SVD compression method to transient, parameter-dependent problems
such that each block of columns of U corresponds to snapshots for each time step of
a simulation for a given parameter realization, one parameter per block. The num-
ber of modes used in the truncated SVD of each block is set a priori, rather than
using an error criterion. In principle, instead of using parameter-based blocks, these
blocking methods could use time-step-based blocks. These blocking methods require
storing only a fraction of the total number of snapshots in memory, but do not update
directly the SVD of the original snapshot matrix; bounds on the relative projection
error incurred by their approximations are provided.

Single-pass incremental SVD methods [7, 4, 14] improve upon these approaches
by updating an existing truncated SVD as new snapshots are collected, and these
approaches have been adopted in recently developed ROM algorithms [50, 6]. Over
a single pass of the FOM solution data, incremental SVD algorithms require the
least memory (in an asymptotic sense) of all deterministic algorithms available for
computing the POD basis. This property is particularly notable in light of memory
limitations per core on large supercomputers. A more detailed analysis of this point
will be presented in Section 2.

Having discussed memory costs, there are two main contributions to the floating-
point operation costs of offline ROM training. First, the cost of computing the POD
ROM basis from the currently selected snapshots typically scales at least linearly with
the number of snapshots selected. In summary: over a single pass of the FOM solution
data, incremental SVD algorithms are the most efficient deterministic algorithms for
calculating the POD basis as each snapshot is selected; a more detailed analysis of
this point will be presented in Section 2. Second, the manner in which snapshots
are selected also contributes to ROM training costs; for all but the simplest methods
used, this dominates the cost of the computing the POD basis, and will be the focus
of this subsection.

When gathering snapshots for transient models (ignoring parameter dependence),
such as the FOM in equation (1.1), the simplest strategy is to collect a snapshot at
every time step of a computed solution and set ū = u0, as suggested by Carlberg,
Bou-Mosleh, and Farhat [10], and by Carlberg, et al. [12].10 This approach has zero

8As discussed above, a common approach is to determine k based on examining all singular values
of the snapshots matrix U; this information is usually unavailable in iterative approaches.

9For any matrix A, there exist multiple SVDs. Excluding the case of degenerate singular values,
complex-valued singular vectors are only unique up to multiplication by eiθ for θ ∈ [0, 2π) (in the
real-valued case, up to sign).

10This description oversimplifies the recommendations of Carlberg, Bou-Mosleh, and Farhat in

Limited memory POD 5

floating-point operation cost associated with snapshot selection, since the only oper-
ations involved are data movement from the FOM solution to the snapshot matrix11.
This approach also has useful numerical properties, the most important being consis-

tency, so that as k approaches m, the approximation error in the ROM approaches
zero. A chief drawback of this approach is that it gathers a large number of snap-
shots, which could exhaust available memory when using conventional dense SVD
approaches to compute the basis. To circumvent this memory limitation, more so-
phisticated approaches to snapshot gathering are needed to decrease the number of
snapshots gathered. None of these approaches can have a smaller cost in floating-point
operations than collecting a snapshot every time step. All subsequent snapshot selec-
tion algorithms discussed here aim to reduce the memory and computational costs of
computing the POD basis by selecting fewer snapshots.

The simplest way to select fewer snapshots in time is to collect snapshots at every
j simulation time steps for some natural number j. (See, for instance, the case studies
in [29].) This approach also has zero floating-point operation cost because the only
operations performed involve data movement.

More sophisticated approaches select snapshots by solving an ODE (or PDE)
constrained optimization problem. However, this approach increases substantially the
number of floating-point operations required due to the additional overhead beyond
calculating the SVD of the snapshot matrix. Approaches such as those by Lass and
Volkwein [39], Kunisch and Volkwein [38], and by Hoppe and Liu [30] set a given
number n of snapshots and then find the times t1, . . . , tn at which snapshots are
to be collected by solving a large nonlinear program that controls or minimizes some
estimate of error in the ROM. If the numberm of state variables is large, this approach
requires a prohibitively large number of floating-point operations and a large amount
of memory, due to the large ODE- (or PDE-) constrained nonlinear program that
must be solved.

Greedy approaches control the error in the ROM solution by selecting snapshots
that maximize a ROM error indicator over a predefined set of candidate snapshots.
These approaches do not incorporate the constraint that the FOM solution can only
be calculated forward in time12. Consequently, assuming that the candidate set of
snapshots is the numerical solution of the FOM, these snapshot selection approaches
either require that the whole numerical solution of the FOM be in memory [24] at each
training iteration so that the error maximizing snapshot can be selected, or that the
FOM solution be recalculated for each training iteration so that the error maximizing
snapshot can be selected on the fly. The former approach has large memory require-
ments in the limit of large numbers of FOM solution time steps; the latter approach
is prohibitively expensive when solving the FOM is expensive, which is usually the
case when training a ROM. More recent, state-of-the-art greedy approaches reduce
memory requirements somewhat by using time-partitioning methods that construct
a basis for each time interval in the partition [17]. This adaptive time-partitioning

[10], Carlberg, et al. in [12] for the sake of streamlining the argument. They recommend instead to
take a snapshot at every iteration of a nonlinear solve, which requires even more memory than merely
collecting a snapshot at every time step. The distinction is important when employing implicit ODE
methods, as opposed to the explicit ODE methods used in this work, and does not change the broader
point that such an approach potentially requires a large amount of memory to store snapshots.

11These operations are integer operations.
12Or only backward in time, for adjoint problems. In this work, we assume time steps are calcu-

lated sequentially either forward or backward in time. We are not yet aware of any approaches that
compute snapshots via time-parallel integration methods; for a brief overview of these methods, see
the recent review by Gander [20] or recent work by Falgout, et al. [19].

6 Limited memory POD

variant requires some recomputation of the FOM solution while controlling the size
of time intervals to trade off between accuracy and maximum basis size.

1.4. Error control. Snapshot selection for POD is a fundamental issue in de-
termining both the accuracy of the ROM (e.g., how well v approximates u, or g(v)
approximates g(u) for some functional g) and the computational costs of the POD
algorithm. By definition, values of v − ū must be in the range of B, which in turn
must be a subset of the range of the snapshot matrix U. Thus, the ROM solution
cannot represent exactly the values of u for any time such that u(t)− ū is not in the
span of the snapshots; the distance u(t)− ū to that subspace is a lower bound for the
distance between u(t)− ū and v(t)− ū.13

Empirically, it has been observed that certain snapshots, such as those depict-
ing the location of shock fronts in compressible flow simulations, and more generally,
snapshots depicting discontinuities in the (weak) solutions of PDEs, are of particu-
lar importance [41]. These snapshots must be selected in order to observe similar
discontinuities in ROM solutions. Including discontinuous ROM solution snapshots
is important to preserve the physical fidelity of ROMs because the discontinuities
are not in the span of a finite number of continuous snapshots depicting discrete
representations of continuous functions.

The need for accuracy is balanced by the offline and online computational costs
of POD ROMs. The offline cost of POD ROMs was discussed in the previous two
subsections. The online cost of POD ROMs scales with the size k of the POD basis. As
noted in Section 1.2, an upper limit on k may be dictated by computational resource
constraints; a lower limit on k is dictated by accuracy requirements via controlling
the ROM approximation error, assuming a fixed collection of snapshots.

Almost all of the methods described above control ROM error with respect to an
error tolerance via by selection the locations of snapshots in time. The notable excep-
tions are approaches that select every jth snapshot. As noted earlier, the consistency
property of ROMs computed via collecting snapshots at every time step ensures that
error control can be achieved by selecting the size k of the POD basis appropriately
[12]. This property does not necessarily hold when selecting every jth snapshot for
j > 1 and setting j = 1 can be impractical when memory is constrained. Also, note
that current methods for selecting every jth snapshot have no error tolerances. Recent
theory on bounding ROM error in terms of snapshot spacing in time [34] supports the
intuition that reducing j (equivalently, reducing the time interval between snapshots)
will reduce ROM error, and will yield a method for error control.

1.5. Contributions. The novel approach presented in this paper instead selects
snapshots on-the-fly during the solution of the FOM. In contrast to greedy methods,
this approach is the first to exploit the property that transient FOM solutions can only
be calculated unidirectionally in time, without storing the whole solution in memory
at once, or recomputing the solution multiple times.14 Similar directionality consid-
erations do not necessarily exist if, for instance, snapshots are selected in parameter
space for system of algebraic equations with one parameter. In the single-parameter
case, is not necessarily more expensive to compute snapshots moving back and forth
in parameter space, whereas computing earlier solutions in time (assuming we solve

13This argument is a weaker version of the proof of [45, Proposition 4.2]; also see the diagram in
[45, Figure 4.1].

14Again, assuming sequential calculation of the ODE or PDE solution; use of parallel-in-time
approaches is an open research question.

Limited memory POD 7

the full-model ODE forward in time) is more expensive because it requires restarting
integration from either given initial conditions or a checkpointed solution.

Snapshots are selected adaptively in time by calculating the time step between
snapshots using methods borrowed from adaptive time stepping for ODEs. In the
adaptive snapshot time stepping calculation, a low-cost error estimator is used that
places no restrictions on the form of the FOM, in contrast to existing methods that
assume the FOM is a semi-discretized PDE using a specific spatial discretization
(e.g., finite element [47, 22], finite volume [24]). As each snapshot is selected, the
POD basis is updated using a single-pass incremental SVD algorithm developed for
streaming data analysis [7]. Consequently, only one column of the snapshot matrix U

must be in memory at any given time, along with the current POD basis matrix B.

As suggested in [13] and [4], use of the incremental SVD for basis computation
substantially reduces both memory requirements and the number of arithmetic opera-
tions performed by the SVD, independent of the snapshot selection criterion. As such,
this basis updating approach is related to blocking the SVD as in [42], but uses less
memory because the “blocks” in the proposed approach are of size 1. The proposed
approach also employs no intermediate compression steps. Instead, truncation of the
SVD occurs on the fly, and after every added snapshot, the truncated incremental
SVD approximates the SVD that would be obtained from conventional dense SVD
algorithms.

The proposed basis updating approach is also related to the basis extension
method proposed by Haasdonk and Ohlberger for use in POD-Greedy approaches
[24], which was developed for parameter-dependent transient problems, and does not
consider selecting snapshots in time.

The proposed basis updating approach uses similar methods to the rank-1 incre-
mental SVD updates for local ROMs [50]; the approach in this paper differs from that
work in that the incremental SVD is applied to appending columns of the snapshot
matrix rather than changing the offset ū of the snapshot matrix via a rank-1 update
[8]. Furthermore, [50] assumes a given database of FOM solutions from which snap-
shots are selected for local ROMs via k-means clustering algorithms; this work instead
focuses on how to select FOM solutions for such a database to build a global ROM.
In principle, the methods in this paper could be adapted to local ROMs; discussion
of that scenario is deferred to future work.

Incremental SVD updates are also used in [6] on steady-state parameter-dependent
problems; time-dependent problems are not considered. ROM approximation error
is estimated using “leave-one-out” approach, where the error at a given parameter
sample is calculated as the difference between the current ROM solution at that pa-
rameter realization and the solution of a lower-fidelity ROM constructed by leaving
out the snapshot at that parameter sample (here, snapshots are calculated by solving
the FOM at parameter samples). Such an approach is undesirable for time-dependent
problems without parameter dependence, because it would require multiple passes
over the data, and does not leverage any theoretical work done on error bounding and
error estimation for ROMs on this class of problems.

The error estimator used in this paper is related to the wide variety of error
estimation and error bounding approaches in the literature (such as [15, 45, 22, 29,
47, 51, 34]). The basic idea of snapshot selection algorithm presented in this work
is to equidistribute the estimated error in a manner similar to the snapshot selec-
tion approach developed by Hoppe and Liu, [30] but without resorting to solving an
expensive optimization problem in both memory and arithmetic operations.

8 Limited memory POD

To the authors’ knowledge, this paper is the first work to propose an inexpensive
adaptive method with error control for selecting POD snapshots on-the-fly in time,
using a single pass of a FOM solution. Furthermore, to the authors’ knowledge, it
is the first work to use single-pass incremental SVD methods to append snapshots in
time, dramatically reducing the memory footprint of the POD algorithm to make it
more suitable for high-performance computing applications. To that end, an upcoming
publication [3] describes a parallel version of the algorithm presented in this paper.

The remainder of the paper proceeds as follows: Section 2 describes the incre-
mental SVD algorithm by Brand used in the snapshot selection algorithm. Section
3 presents the error estimation arguments used in this work. Having presented the
background necessary for the proposed snapshot selection algorithm, this algorithm is
explained in Section 4. Section 5 illustrates the performance of the snapshot selection
criterion using a viscous Burgers’ equation as a case study, and compares results to
those obtained from an algorithm that samples at equispaced points in time. Finally,
Section 6 concludes the paper with a summary and potential extensions of this work.

2. Incremental SVD algorithm. An incremental SVD algorithm from Brand
[7] is used to update the SVD on-the-fly as snapshots are added. We require that an
SVD algorithm used for adaptive snapshot selection compute the SVD using only a
single pass over the data, since we assume that the full order model is solved only once
for a given initial condition and right-hand side. Other single-pass incremental SVD
algorithms are available; see Baker, Gallivan, and Van Dooren [4] for a recent review.
Brand’s algorithm was selected due to ease of implementation and the simplicity of
describing the algorithm. It is also used in other ROM algorithms (for instance,
[50, 6]).

Brand’s algorithm15 takes as input an existing rank-k SVD of a matrixM ∈ R
m×n

defined by

M = V diag(s)W T +E,(2.1)

where V diag(s)W T is a rank-k truncated SVD of M, E ∈ R
m×n is the error due

to rank truncation, s ∈ R
k is a vector containing the k largest singular values of M in

nonincreasing order of magnitude, V ∈ R
m×k is a matrix containing the corresponding

k left singular vectors, W ∈ R
n×k is a matrix containing the corresponding k right

singular vectors, and E = 0 if the rank of M is k. Let c ∈ R
m be a column to be

added to M, and consider updating the rank-k truncated SVD of M in (2.1) to a
truncated SVD of [M c].

Set

p = ‖c−VV T c‖.(2.2)

This incremental SVD algorithm arises from the identity

[

V diag(s)W T c
]

=
[

V (I−VV T)c/p
]

[

diag(s) V T c

0 p

] [

W 0

0 1

]T

=
[

V j
]

[

diag(s) ℓ

0 p

] [

W 0

0 1

]T

(2.3)

15Brand presents multiple algorithms in his original conference paper on the incremental SVD.
Here, we present the “näıve” version of Brand’s incremental SVD algorithm using single-column
updates, for simplicity.

Limited memory POD 9

Note that the left and right matrices in the matrix triple products are semi-
unitary; ℓ ∈ R

k is the projection of c onto the span of V in the V basis; p is the
length of the orthogonal projection of c onto the orthocomplement of the range of V.

In addition to the truncated SVD of the matrix M and the vector c, Brand’s
algorithm also takes as input an SVD truncation tolerance εSVD used to determine
if c is numerically linearly independent of the range of M, R(M). Algorithm 1
initializes the incremental SVD when it is empty (i.e., k = 0), and algorithm 2 updates
the incremental SVD when appending a new column when the SVD is not empty
(k > 0). In algorithm 2, MATLAB indexing conventions are used as subscripts to
denote submatrices extracted via indexing operations.

Algorithm 1 Initializing incremental SVD when k = 0.

1: function EmptyIncSVD(c, εSVD)
2: if ‖c‖ > εSVD then ⊲ Truncated SVD is numerical rank k = 1.
3: s← [‖c‖]
4: V← c/‖s‖
5: W← [1]
6: else ⊲ Truncated SVD is numerical rank k = 0.
7: s← []
8: V← []
9: W← []

10: end if

11: return V, s,W
12: end function

In algorithm 2, Q is a 1-column bordered diagonal matrix, so it can be bidiago-
nalized in O(k2) time. The SVD of the resulting bidiagonal matrix can be computed
in O(k2), so the SVD within Brand’s incremental algorithm is cheap relative to the
cost of a dense SVD on [M c], and the entire truncated SVD takes O(mnk2) time,
requiring O(k(m + n + k)) memory. For low-rank matrices, as is the case with the
POD snapshot matrix U when k ≪ m, the thin SVD is computed in O(mnk) time
and O(k(m+ n)) memory [7, 4].

Steps 16 through 19 are not in the original algorithm by Brand. Step 16 tests to
see if the dimension k of the singular basis V equals m, the number of state variables
in the FOM. If it does, this and all subsequent column appends are automatically
rank non-increasing. This step preserves the orthogonality of V in the limit of large
numbers of column appends when k approaches (or equals) m. Also of special note
are steps 26 through 30, which are required in order to preserve the orthogonality of
V; these steps are in Brand’s description of the algorithm16, and are required because
the orthogonality of V degrades as columns are added. The tolerance used in the
orthogonality test in step 26 is the minimum of ε·m and εSVD, where ε is unit roundoff
(eps in MATLAB). These orthogonalization tolerances were chosen on the grounds
that ε ·m is the same tolerance used in MATLAB for determining the rank of a matrix
(in this case, V), and the POD basis vectors should be at least as numerically linearly
independent as the SVD truncation tolerance (recall that εSVD is as a tolerance for
testing linear independence of the snapshot from the POD basis). Removing either
the k ≥ m test in step 16 or the reorthogonalization procedure in steps 26 through 30

16Specifically, Brand recommends modified Gram-Schmidt orthogonalization [7]; thin QR works
well in practice.

10 Limited memory POD

Algorithm 2 Modified version of Brand’s incremental SVD

1: function IncSVD(V, s,W, εSVD)
2: if k = 0 then ⊲ Initialize empty SVD; see Algorithm 1.
3: [V, s,W]← EmptyIncSVD(c, εSVD)
4: return V, s,W
5: end if

6: ℓ← V T c

7: p←
√
cT c− ℓT ℓ ⊲ p = ‖c−Vℓ‖ = ‖c−VV T c‖.

8: j← (c−Vℓ)/p

9: Q←
[

diag(s) ℓ

0 p

]

10: if p < εSVD then ⊲ If p is small, set its entry in Q to zero.
11: Qend,end ← 0.
12: end if

13: [V′, diag(s′),W′ T] ← SVD(Q).
14:

15: ⊲ In next line, if p small or M full rank, SVD rank held constant.
16: if p < εSVD or k ≥ m then

17: V← VV′

1:k, 1:k ⊲ Rotate left singular vectors.
18: s← s′1:k
19: W←WW′

:, 1:k ⊲ Rotate right singular vectors.
20: else ⊲ c is not in the span of M; SVD rank increases.
21: V← [V j]V′

22: s← s′

23: W←
[

W 0

0 1

]

W′

24: k ← k + 1
25: end if ⊲ In next line, ε is unit roundoff (eps in MATLAB).
26: if |V T

1:,1 V1:,end| > min(εSVD, ε ·m) then
27: ⊲ Basis has lost (numerical) orthogonality
28: [Q′,R] ← QR(V) ⊲ Reorthogonalize basis via thin QR.
29: V← Q′

30: end if

31: return V, s,W ⊲ Return SVD.
32: end function

degraded the accuracy of ROMs to the point of numerical instability and overflow in
cases with large numbers of snapshots. Thus, in the implementation of this algorithm,
it is absolutely critical that both of these features be implemented for robustness.

For POD, the most important thing to note is that only the left singular vectors
and the singular values need be calculated; all computations involving right singular
vectors can be omitted from the algorithm, including the use of the right singular
vectors W as an input [13]. Consequently, for POD, the incremental SVD only
requires O(mk) memory; basis truncation occurs on the fly. In comparison, a dense
SVD would require O(mn2+m2n+n3) time and at least O(m2+n2+mn) memory for
the input and for the left and right singular vectors upon output [21]. An iterative17

17Again, with respect to the SVD, “direct” and “iterative” are only being used to describe the
algorithm for generating a bidiagonal matrix within the SVD algorithm.

Limited memory POD 11

SVD would require O(mnk2) time, but k must be known in advance, which is not
necessarily true for POD, and the actions of the snapshot matrix and its transpose
would be required [7, 21]. Since there is no way of obtaining the action of the snapshot
matrix (or its transpose) in matrix-free fashion in general, the storage requirements
for Krylov-type iterative methods are still Ω(mn) (i.e., the full snapshot matrix), and
larger than necessary, since n ≥ k, and generally, n ≫ k. The snapshot matrix is
not sparse in general, so sparse direct SVD methods offer no memory savings [44].
Thus, in an asymptotic sense, the incremental SVD is the most efficient algorithm
from a memory perspective, and also requires the fewest floating point operations in
the low-rank limit.

In cases where ū is not known in advance of snapshot collection, if ū can be
calculated on the fly as a function of the snapshots selected, then the SVD can be
updated via a rank-1 update after all snapshots are selected [8]; error estimates will
not reflect this rank-1 update.

3. Error estimation. Controlling the error in computed ROM solution using
error estimates to determine the time interval between snapshots has obvious par-
allels to adaptive time stepping methods for ODEs that select time steps based on
controlling estimated local truncation error [25]. In this section, an estimate of the
approximation error in the ROM solution is derived so that it can be used in an error
control mechanism in the adaptive snapshot selection algorithm presented in Section
4.

Recall from equation (1.4) that v approximates the solution u to equation (1.1).
Define the error in that approximation by

e = u− v(3.1)

so that v = u − e. An ODE governing the error follows by substituting the
definition in equation (1.4) into equation (3.1), differentiating both sides with respect
to time, then substituting in the right-hand sides from the ODEs in equations (1.1)
and (1.3), yielding

ė(t) = f(t,u(t))−BBT f(t,Bũ(t) + ū); e(0) = (I−BBT)(u0 − ū)(3.2)

Rewriting equation (3.2) as

ė(t) = (I−BBT)f(t,u(t)) +BBT[f(t,u(t))− f(t,Bũ(t) + ū)](3.3)

e(0) = (I−BBT)(u0 − ū)

shows that there are two components to the error: (a) an out-of-subspace compo-
nent (the first term on the right-hand side of equation (3.3)), and (b) an in-subspace
component (the second term on the right-hand side of equation (3.3)) [45].

Define the error estimator η by neglecting the in-subspace component of the error,
yielding

η̇(t) = (I−BBT)f(t,u(t)); η(0) = (I−BBT)(u0 − ū)(3.4)

12 Limited memory POD

One motivation for using this error comes from trading off lower accuracy in the
error estimate for lower computational cost. Note from equation (3.4) that integrating
with respect to time yields

η(t) = (I−BBT)(u(t)− ū).(3.5)

This quantity is computed as part of step 8 of algorithm 2, where t in that step
is the time at which the snapshot is collected18. Computing the right-hand side of
equation (3.4) only requires evaluating the right-hand side of equation (1.1) – also
calculated as part of solving the FOM ODE – as well as two matrix-vector multiplies,
and a subtraction. No Jacobian matrix information is required, and the error estimate
can be computed in real time without storing the FOM solution u as it is computed.

Another motivation for using only the out-of-subspace contributions to the error
estimates in (3.4) and (3.5) comes from theory. Results on bounding the error in POD
ROM solution show that as the out-of-subspace error approaches zero, the total error
also approaches zero [45] over a compact interval in time. Therefore, error control
based on estimating only the out-of-subspace error should be effective. The efficacy
of this approach is confirmed in convergence studies in Section 5.

A potential disadvantage of using this estimator is that it neglects the in-subspace
component of the error orthogonal to the error estimator defined by equations (3.4)
and (3.5). Additional terms could be added to the right-hand side of equation (3.4)
to improve its accuracy at the cost of requiring additional information, such as the
Jacobian matrix of the right-hand side of the FOM ODE in equation (1.1) [29, 45, 51].
For problems requiring implicit time integration methods, this information must be
provided or estimated as a matter of course. For problems using explicit time inte-
gration methods, this information is not typically provided because it is not needed;
however, since only the action of the Jacobian would be necessary for improved error
estimation, Jacobian-free matrix-vector products could be used as in [33] to estimate
this required information, if necessary.

A more accurate error estimator will affect the growth of the estimated error,
which will in turn influence when snapshots are selected. Since fewer snapshots are
preferred, all other things equal, slightly underestimating the error might be advanta-
geous, especially when it is known that bounds on the error involving Lipschitz con-
stants or logarithmic norms tend to overestimate the error. Recent work by Drohmann
[18] suggests that error bounds and error estimators are strongly correlated with the
actual error in the ROM and describes a procedure for modeling the true error, given
error bounds or error estimates. This work could be used to relate the error estimator
above to the true error for more quantitative error control in snapshot selection.

4. Snapshot selection algorithm. The premise of the adaptive snapshot se-
lection algorithm is to gather snapshots on-the-fly while calculating the solution to
the FOM ODE defined by equation (1.1). First, the algorithm is described informally,
then the calculation of snapshot query times is presented, and finally, the algorithm
is summarized in pseudocode.

Adaptive snapshot selection takes as input the FOM initial condition u0, an SVD
truncation error tolerance εSVD, and a snapshot selection error tolerance εsnapshot.
Concurrent to initializing the FOM ODE solution loop, adaptive snapshot selection

18In this algorithm, the matrix of left singular vectors V is the POD basis B, and the added
column c would be a snapshot of the form ui − ū, as in equation (1.2).

Limited memory POD 13

is initialized by setting the snapshot query time tQ to 0 (consistent with the initial
condition, without loss of generality), the snapshot query time interval ∆tQ to the
size of the first time step taken by the FOM ODE solver, the POD basis to an empty
matrix, and the POD singular values to an empty vector. Then, within the FOM ODE
solution loop, a snapshot is selected at the first time step that exceeds the current
snapshot query time, and the POD basis is updated. The snapshot query time is then
updated based on an estimated error criterion. This process of selecting a snapshot
from the first time step after the current query time, updating the POD basis, and
then updating the query time repeats until the query time exceeds the simulation end
time, T , and the FOM ODE solution loop terminates.

The snapshot query time update is based on predicting the growth of the ROM
approximation error in time between tQ, the time of the most recently gathered snap-
shot, and tQ + ∆tQ, the next snapshot query time. The ROM error at tQ + ∆tQ is
estimated using a forward Euler method, so that

η(tQ +∆tQ) = η(tQ) + ∆tQη̇(tQ) + h.o.t,(4.1)

where η(tQ) is calculated via (3.5), η̇(tQ) is calculated via (3.4), and higher order
terms in the Taylor series are neglected. The value of ∆tQ is then updated from its
current value using the formula

∆tQ ← mid

(

∆tQ,min,∆tQ,max,∆tQ ·mid

(

ϕmin, ϕmax, ϕ ·
(

1

‖η(t+∆tQ)‖e

)))

,

(4.2)

where mid(·, ·, ·) takes the middle value of its three arguments, ∆tQ,min is a min-
imum query time step between snapshots, ∆tQ,max is a maximum query time step
between snapshots, 0 < ϕmin < 1 is a minimum time step scaling factor, ϕmax > 1 is
a maximum time step scaling factor, ϕmin < ϕ < 1 is a time step scaling factor, and
the error norm ‖ · ‖e is defined by

‖x‖e = ‖x/εsnapshot‖∞.(4.3)

The update formula (4.2) is inspired by methods for updating the time step in
variable-step-length algorithms for solving ODEs, where the step size is estimated
from a estimate of the local truncation error ([25], Section II.4). Values of ϕmin = 0.1,
ϕmax = 5, ϕ = 0.8 are suggested for similar time step selection formulas for ODEs;
based on trial-and-error, ϕmin = 0.05 and ϕmax = 10 were used instead to adjust
more aggressively the snapshot query time step in response to the error estimate.
The weighted error norm can be modified to incorporate componentwise absolute and
relative error tolerances, as shown in [25]; here, simple scaling by an absolute tolerance
was chosen for simplicity. The error norm quotient term in step size formulas such as
(4.2) typically has an exponent of 1/(q+1), where q is chosen to be either the order of
the numerical method or the order of its embedded estimator, whichever is smaller. In
(4.2), the error norm quotient term has an exponent of 1, corresponding to q = 0, since
in this case, the error estimator is of order 1 (a first-order Taylor series approximation
in time), and the embedded error estimator is zeroth-order. This embedded error
estimator is zeroth-order because using a ROM in place of the FOM in a numerical

14 Limited memory POD

method can be viewed as a zeroth-order approximation in time, since the ROM right-
hand side will not generally equal the first derivative of the FOM solution with respect
to time.

From this informal description, the adaptive snapshot selection algorithm is de-
fined by Algorithm 3.

Algorithm 3 Sketch of offline ROM training stage: time-adaptive snapshot selection

1: function AdaptiveSnapshotSelection(u0, εSVD, εsnapshot)
2: t← 0, tQ ← 0, B← [], and s← [] ⊲ Initialize with empty basis.
3: Initialize ∆tQ to size of first time step of ODE solver.
4: while t < T do

5: if t ≥ tQ then

6: [B, s]←IncSVD(B, s,u(tQ)− ū, εSVD). ⊲ See Algorithm 2.
7: Calculate ∆tQ from (4.2). ⊲ Uses snapshot selection error tolerance

εsnapshot.
8: tQ ← tQ +∆tQ ⊲ Update snapshot query time.
9: end if

10: Increment t by the next ODE solver time step and compute u(t) using
ODE solver. ⊲ The ODE solver controls time stepping.

11: end while

12: end function

Once u(tQ) is added as a snapshot, u(tQ) is in the range of B, so (I−BBT)u(tQ)
is approximately 0, and this algorithm can be interpreted as controlling the estimated
error between snapshots. The adaptive snapshot selection algorithm requires asymp-
totically negligible additional amounts of memory beyond the memory requirements
of incremental SVD, so this algorithm requires O(mk) memory, where k is the number
of POD basis vectors.

5. Results. To demonstrate the efficacy of the error estimator presented in Sec-
tion 3 when it is used in the adaptive snapshot selection algorithm in Section 4,
both the error estimator and the snapshot selection algorithm were implemented in
MATLAB and used to generate ROMs for a 1-D computational example.

The 1-D transient viscous Burgers’ equation over the interval [0, L] in space and
[0, T] in time is a common test problem in the ROM literature [51, 47, 32, 28]. This
equation takes the form:

ut = µuxx −
a

2
(u2)x − bux(5.1)

where µ is a momentum diffusivity (viscosity), a is the speed of momentum ad-
vection, and b is a constant speed advection term.

All results presented in this paper set L = 1, T = 10, µ = 0.01, a = 0.1, and
b = 0, and have homogeneous Dirichlet boundary conditions u(0, t) = u(L, t) = 0. A
shifted Gaussian initial condition is used, taking the form

u(x, 0) = uG(x) = exp

(−(x− 0.5)2

2 · (18)2
)

− exp

(−0.52
2 · (18)2

)

,(5.2)

Limited memory POD 15

where the mean of the Gaussian is 0.5, its standard deviation is 1/8, and the
vertical shift ensures that uG(0) = uG(1) = 0.

The Gaussian initial condition is chosen to illustrate behavior for a smooth (C∞)
solutions. Since any L∞([0, 1]) initial condition for viscous Burgers’ equation under
periodic boundary conditions yields a solution u that is C∞ with respect to x for all
t > 0 [35, Theorem 4.3.3], it is not possible to induce a discontinuous weak solution
(excluding t = 0) for viscous Burgers’ equation for the parameter values and periodic
Dirichlet boundary conditions given above.

The viscous Burgers’ equation is discretized uniformly in space using second order
centered finite differences for the diffusive term and first order centered finite differ-
ences for the advection terms with a grid spacing of ∆x = 5 · 10−3. This choice of
discretization is also taken from the literature [51, 28]. Although this discretization
is unstable in the inviscid limit (µ → 0) [40], sufficiently high viscosity stabilizes it.
The linearity of this discretization makes the resulting discrete equations amenable to
precomputing the coefficient matrices of the ROM via offline/online decomposition.19

If a nonlinear discretization were used, such as a flux-limited Lax-Wendroff scheme
commonly used in solving hyperbolic PDEs, the cost of the (nonlinear, non-quadratic)
POD ROM right-hand side evaluations would scale with the dimension of the FOM
because the discretized FOM would be nonlinear [45, 10, 15]. In practice, to reduce
the computational cost of these evaluation, an interpolation method such as the dis-
crete interpolation method (DEIM) [15] or Gauss-Newton with approximated tensors
(GNAT) [10, 12] would be required to reduce the computational cost of the ROM to
the point where it scales with the ROM dimension.

After spatial semidiscretization, the viscous Burgers’ equation takes the form

u̇ = Au− a

2
D diag(u)u,(5.3)

analogous to the FOM in equation (1.1), where u(t) ∈ R
201 is the spatially

semidiscretized velocity field, L ∈ R
201×201 is a discrete Laplacian matrix, D ∈

R
201×201 is a discretized form of the first order central difference operator, and A ∈

R
201×201 contains the linear operator part of viscous Burgers’ equation: A = µL−bD.

The semidiscretized viscous Burgers equation in equation (5.3) is then discretized
uniformly in time using a second order explicit predictor-corrector scheme. The num-
ber of time steps over the interval [0, T] was calculated based on convective and
diffusive stability limits using

ntime steps =

T

CFL ·min
(

∆x
umax

, (∆x)2

2µ

)

(5.4)

19The basic idea of tensorial POD is that for full-order models that consist of explicit ODEs that
have right-hand sides that are polynomials of degree p or less, the resulting POD ROM ODEs have
right-hand sides that are also polynomials of degree p or less. The coefficient matrices and tensors
of these ROMs can be precomputed for a one-time cost, and doing so is advantageous because
these precomputed coefficient matrices can be used to evaluate the ROM right-hand sides at a
cost proportional to the pth power of the ROM dimension. In practice, this tensorial approach is
efficient only for p ≤ 2 [49]. For full-order models with more general nonlinear right-hand sides,
evaluating POD ROMs requires computing the full-order model right-hand side and two matrix-
vector multiplies that scale with the dimension of the full-order model [45, 10, 15]. This scaling
motivates hyperreduction methods that reduce the cost of ROM right-hand side evaluations.

16 Limited memory POD

where umax is a bound on the velocity u(x, t), and CFL denotes the CFL number,
which is taken to be 0.9. For the case studies in this paper, umax was taken to be 1,
because it is an upper bound on both initial conditions under consideration and it can
be shown using logic similar to [35, Lemma 4.2.3] that ‖u(x, t)‖∞ ≤ ‖u(x, 0)‖∞ for
all 0 ≤ t ≤ T .20 In (5.4), the diffusive stability limit determines the time step for the
case studies presented, yielding 8901 time steps of size ∆t = T/ntime steps = 1.1 ·10−3.

A convergence study was performed with respect to the SVD truncation toler-
ance εSVD under the assumption that εsnapshot = εSVD (i.e., the SVD truncation
tolerance and the snapshot selection error tolerance are equal). In these studies, the
only parameters that change are εSVD and εsnapshot, and ROMs are generated for
εSVD = εsnapshot = 10−i for i = 1, . . . , 15. The minimum and maximum snapshot
query time intervals were set to ∆tQ,min = ∆t and ∆tQ,max = T = 10, respec-
tively. Three ROMs were generated for each case: (1) an adaptive snapshot ROM,
(2) a ROM using equispaced snapshots to match the number of snapshots from the
adaptive snapshot ROM, and (3) a ROM using equispaced snapshots to match ap-
proximately a normalized root-mean-square error (NRMSE) of the adaptive snapshot
ROM. For (3), approximately matching the NRMSE was performed by calculating the
number of snapshots needed to minimize the difference between the equispaced ROM
NRMSE and the adaptive snapshot ROM NRMSE. This minimization was performed
by bisection over the number of snapshots. Since the number of snapshots is a discrete
quantity, in general, the optimal objective function value of this minimization will not
be zero, hence the NRMSE can only be matched approximately.

The NRMSE, a scaled L2([0, L]× [0, T]) function norm) norm between two func-
tions is formally defined by:

NRMSE(u, v) =
1√
LT

(

∫ L

0

∫ T

0

[u(x, t)− v(x, t)]2 dt dx

)1/2

,(5.5)

where u and v are functions in L2([0, L] × [0, T]). This quantity is calculated
approximately by:

NRMSE(u, v) =

∆x∆t

LT

∑

i,j

(ui(tj)− vi(tj))
2

(5.6)

so that a unit error in u − v over [0, L] × [0, T] has an NRMSE of 1. For the re-
mainder of this article, the NRMSE will always be computed between a FOM solution
and a corresponding ROM solution trained on that FOM solution, so the arguments
of the NRMSE function can be inferred from context.

ROMs are generated by capturing snapshots (one ROM per method of snapshot
selection) and calculating a POD basis using the incremental SVD algorithm described

20The result in [35, Lemma 4.2.3] applies to the case where u(x, 0) is a C∞ function with respect
to x over the interval [0, 1] when a = 1 and b = 0 with periodic boundary conditions. A sketch of the
required extensions follows: The result in [35, Lemma 4.2.3] holds if we instead change the domain
of the PDE to [0, L] via trivial modifications. If u(x, 0) is instead an L∞([0, L]) function of x, then
u(x, t) is a C∞ function of x [35, Theorem 4.3.3], and a change of coordinates in t yields the result
in the case of L1([0, L]) initial conditions. The case where a > 0, a 6= 1 follows by scaling the x

coordinate so that the scaled equation resembles the a = 1 case. If v is a solution to the viscous
Burgers’ equation 5.1 when b = 0, then for b 6= 0, w(x, t) = v(x− bt, t) is a solution to this equation
with the same boundary conditions, and values for a and µ.

Limited memory POD 17

in Section 2. These bases are then used to form the ODE system (1.3) via offline/online
decomposition using a tensorial POD approach [49], yielding the system

˙̃u = Ãũ− a

2
BT D diag(Bũ)Bũ(5.7)

where

Ã = BT(A− aD diag(ū))B

is precomputed offline21, and the constant coefficients of the quadratic term in
(5.7) make up a rank-three tensor that is also precomputed offline.

The three ROM snapshot selection methods (adaptive snapshot, equispaced snap-
shots matching number of adaptive snapshots, and equispaced snapshots matching
approximately the adaptive snapshot NRMSE) are compared for this case study. A
comparison of adaptive snapshot selection to equispaced snapshots matching the num-
ber of adaptive snapshots isolates the effect of snapshot location, keeping the number
of snapshots constant. If adapting the location of the snapshots achieves its intended
goal, then adaptive snapshot selection ROMs will have smaller NRMSEs than equi-
spaced snapshot ROMs, at constant numbers of snapshots. A comparison of adap-
tive snapshot selection to equispaced snapshots matching approximately the adaptive
snapshot NRSME instead keeps the NRMSE approximately constant to study the dif-
ferences in the number of snapshots between two methods for ROMs of approximately
the same quality, where NRMSE is used as the quality figure of merit. If adaptively
selecting snapshots based on ODE-like error control achieves its intended goal, then
adaptive snapshot selection ROMs will be trained using fewer snapshots than equi-
spaced snapshot ROMs at (approximately) constant NRMSE. Taken together, these
comparisons investigate whether adaptive snapshot selection saves memory by se-
lecting fewer snapshots and whether it yields more accurate ROMs than comparable
naive approaches that are designed to save memory by crudely reducing the number
of snapshots gathered.

A comparison of adaptive snapshot selection to optimization-type methods for
snapshot selection is not considered in this article. These methods have considerably
higher theoretical cost and these methods compute snapshot locations that minimize
the error between the ROM and FOM solutions, so the ROM error from these meth-
ods must necessarily be less than the ROM error attained using adaptive snapshot
selection. This theoretical analysis already yields an informative qualitative compar-
ison of methods. We believe a concrete comparison would not provide significantly
more information in the context of this article relative to the substantial amount of
work involved in implementing these methods.

Figure 5.1 demonstrates the numerical convergence behavior of the ROM error
as the snapshot selection error tolerance εsnapshot and SVD truncation error tolerance
εSVD both approach zero, with εsnapshot = εSVD; corresponding data can be found in
the first and second columns of Table 5.1. This behavior is to be expected based on
the theory by [45], which states that as the out-of-subspace error approaches zero, the

21In the derivation, both linearity of the diag(·) operator and the identity diag(Ax)y = diag(y)Ax

are used; this identity holds for all matrices A and all vectors x and y that can be premultiplied by
A.

18 Limited memory POD

total error also approaches zero. In practice, the ROM error approaches the limit of
numerical error in the FOM solution because in the limit as both εsnapshot and εSVD

go to zero, a snapshot is collected at every time step and there is no truncation in the
SVD, yielding a consistent ROM, as discussed in Section 1.3 and in both Carlberg,
Bou-Mosleh, and Farhat [10] and Carlberg, et al. [12]. In cases where gathering every
snapshot yields a full-rank snapshot matrix, the resulting basis B is the identity, and
there is no approximation error due to model reduction.

10
−15

10
−10

10
−5

10
0

10
−15

10
−10

10
−5

10
0

Adaptive error control tends to generate more accurate ROMs (constant # snapshots)

Tolerance

N
R

M
S

E

Adaptive

Equispaced (constant snapshots)

Equispaced (match NRMSE)

Fig. 5.1. Plot of normalized root mean squared error (NRMSE) for ROMs generated via adap-
tive snapshot selection, via equispaced snapshot selection while holding the number of snapshots
constant, and via equispaced snapshot selection while holding the NRMSE approximately constant.
Note that the NRMSE cannot truly be held constant because the number of snapshots selected for
generating a ROM is a discrete quantity. When holding the number of snapshots constant, ROMs
generated via adaptive snapshot selection tend to be more accurate than those generated via equis-
paced snapshot selection. For a snapshot selection error tolerance εsnapshot ≤ 10−12, the ROM error
is essentially discretization error, because the dimensions of the ROM and FOM are equal.

The snapshot selection error tolerance εsnapshot controls the out-of-subspace error,
because the error estimator defined in (3.5) is the out-of-subspace error. The SVD
truncation error tolerance εSVD controls the extent of truncation in the POD basis
because column updates with out-of-subspace components having a norm22 less than
εSVD do not increase the rank of the truncated SVD computed via incremental SVD.
As the εsnapshot approaches zero, (4.2) implies that the query time step ∆tQ should
approach the minimum query time step ∆tmin. For this case study, the minimum
query time step ∆tmin equals the uniform time step ∆t used to solve the FOM and
each ROM. This behavior is illustrated in Figure 5.2 and Table 5.2. As the SVD
truncation tolerance εSVD approaches zero, the ROM dimension should approach the
analytical rank of the snapshot matrix. In the limit of taking every time step as a
snapshot, as implied by εsnapshot → 0, εSVD → 0 should cause the ROM dimension k
to approach the FOM dimension n. This behavior is shown in Figure 5.3 and Table
5.3. When k = n, the ROM can be replaced by the FOM – that is, no reduction is

22This norm is induced by the inner product used in POD. In this work, the standard inner
product and 2-norm are used; again, see [46] for a development of POD that relaxes this assumption.

Limited memory POD 19

Table 5.1

Tabular data of normalized root mean squared error (NRMSE) for ROMs generated via three
different snapshot selection methods. Data corresponds to the plot in Figure 5.1.

NRMSE for method
εsnapshot = εSVD Adaptive Equispaced, match

snapshots NRMSE
10−1 1.239807214007622 · 10−2 5.828677008862002 · 10−3 5.828677008862002 · 10−3

10−2 6.296425416789283 · 10−4 1.039243702024760 · 10−3 6.129920029249113 · 10−4

10−3 1.068645251991729 · 10−5 1.746999648199025 · 10−4 2.080226537527587 · 10−5

10−4 2.536821485132733 · 10−7 3.604437259962754 · 10−5 1.050635123434055 · 10−6

10−5 2.943286117122302 · 10−7 5.484497075282365 · 10−6 2.961321194657043 · 10−7

10−6 9.927282323640713 · 10−8 1.550798690655468 · 10−6 1.017037973103686 · 10−7

10−7 1.205197614116022 · 10−8 4.341741792173280 · 10−9 2.123073561620740 · 10−8

10−8 1.329186522489154 · 10−11 1.236299527261632 · 10−11 1.354559042199227 · 10−11

10−9 6.352783184073289 · 10−12 3.757421939779895 · 10−13 1.662813259533936 · 10−13

10−10 3.742506310600856 · 10−13 6.411223998569631 · 10−5 6.287748822147332 · 10−14

10−11 7.914026183371563 · 10−10 1.064007225742505 · 10−13 3.521887390284772 · 10−13

10−12 2.395510913210610 · 10−15 2.101736530712850 · 10−9 1.813148794351629 · 10−13

10−13 3.304287743723571 · 10−15 1.957486145353330 · 10−13 1.813148794351629 · 10−13

10−14 1.059201105169324 · 10−15 4.027588919626010 · 10−9 1.038062487184869 · 10−13

10−15 4.425995829865038 · 10−14 4.064600244343451 · 10−14 2.809341957484505 · 10−14

possible for the given εSVD and εsnapshot – and the ROM error in that case should be
the numerical error in the FOM solution due to discretization, roundoff, and so on.23

Figure 5.1 also compares the NRMSE for the three types of ROMs mentioned
earlier in Section 5, as the SVD truncation error tolerance εSVD and snapshot selection
error tolerance εsnapshot approach zero; Table 5.1 lists the data plotted in Figure 5.1.
When the number of snapshots is held constant, equispaced snapshot ROMs tend to be
less accurate than adaptive ROMs. This diminished accuracy is probably correlated
with the trend in Figure 5.3 showing that when the number of snapshots is held
fixed, adaptive ROMs are slightly larger in dimension than equispaced ROMs. Taken
together, these results suggest that the adaptive ROM snapshots contain more (and
more accurate) information on the behavior of the FOM (5.3) than ROMs using a
comparable number of equispaced snapshots.

Figure 5.1 also shows that the NRMSE can only be held approximately constant
when comparing an adaptive ROM to an equispaced ROM by varying the number of
snapshots in the latter ROM. This behavior results because the number of snapshots
is a discrete quantity. Figure 5.2 shows that to match approximately the NRMSE,
equispaced ROMs tend to require significantly more snapshots (in extreme cases, over
300 times as many), likely because equispaced snapshots are chosen without regard to
controlling the error. Figure 5.3 also shows that matching approximately the NRMSE
tends to yield smaller adaptive ROMs than equispaced ROMs. Cross-referencing Fig-
ure 5.3 with Figure 5.1 suggests that this trend holds because matching the NRMSE of
the adaptive ROM with an equispaced ROM at constant SVD truncation εSVD tends
to result in the equispaced ROM being more accurate, although for εSVD ∈ {10−i}5i=1,

23If the FOM were being solved with implicit methods, the errors in the linear and nonlinear
solvers would also contribute.

20 Limited memory POD

10
−15

10
−10

10
−5

10
0

0

1000

2000

3000

4000

5000

6000

7000

8000

9000
Adaptive error control tends to requires fewer snapshots to attain given error

Tolerance

of

 s
na

ps
ho

ts
 c

ol
le

ct
ed

Adaptive

Equispaced (match NRMSE)

Fig. 5.2. Plot of number of snapshots collected for ROMs generated for the case study via
adaptive snapshot selection and via equispaced snapshot selection while holding the normalized root
mean squared error (NRMSE) approximately constant. Note also that for this case study, as the
snapshot selection tolerance εsnapshot approaches zero, the number of snapshots collected should
approach the total number of time steps taken in the full order model. For this case study, the total
number of time steps taken is 8901.

the equispaced ROM (matching NRMSE) is both less accurate and larger than the
corresponding adaptive ROM. These findings for equispaced models that match ap-
proximately the NRMSE suggest that adaptive ROM snapshots also contain more
information per snapshot.

6. Conclusion and discussion. The convergence study above in Section 5
demonstrate the efficacy of the error estimator presented in Section 3 as part of
an adaptive snapshot selection algorithm in Section 4. When applied to a standard
viscous Burgers’ equation benchmark problem from the literature, this adaptive snap-
shot selection algorithm gathers no more snapshots than commonly used equispaced
snapshot selection algorithms for a given normalized root-mean-square error, at the
cost of a slightly larger ROM basis. Independent of snapshot selection strategy, using
an incremental SVD algorithm in concert with adaptive snapshot selection drastically
reduces memory requirements of POD so that only the POD basis vectors, their cor-
responding singular values, and one snapshot must be stored in memory (along with
an asymptotically negligible number of additional scalars). The adaptive snapshot
selection algorithm reduces the computational overhead of POD by capturing fewer
snapshots; this reduction in overhead is offset somewhat by calculating the error es-
timator for use in adaptive snapshot selection.

An obvious direction for future work is applying this algorithm to more production-
scale problems to refine the parameters used, and to more thoroughly test the method
by benchmarking it on a larger set of test problems. Given that POD ROMs do not
effectively the reduce computational cost of general nonlinear full-order models, with-
out incorporating hyperreduction methods (as discussed below), the method proposed
here is limited to linear and quadratic full-order models. The viscous Burgers’ case
study results suggest that adaptive snapshot selection could be effective for full-order

Limited memory POD 21

Table 5.2

Table of number of snapshots collected for ROMs generated for the case study via three different
snapshot selection methods. Data listed here is plotted in Figure 5.2.

snapshots for method
εsnapshot = εSVD Adaptive Equispaced,

match snapshots
10−1 10 10
10−2 15 17
10−3 22 1595
10−4 29 8900
10−5 38 53
10−6 44 58
10−7 77 1180
10−8 312 344
10−9 540 1654
10−10 1186 1716
10−11 1340 1341
10−12 1212 8901
10−13 1174 8901
10−14 1278 8901
10−15 2224 3881

models arising from parabolic PDEs. However, it is known that accurately approx-
imating phenomena such as moving shocks [41, 9] that occur in hyperbolic PDEs is
still challenging for ROMs. We are in the process of testing our adaptive snapshot
selection algorithm on such problems, and intend to refine it as necessary to achieve
convergence in L2 error in the limit as algorithm error tolerances approach zero.

Another direction for future work is extending the error estimation and adaptive
snapshot selection algorithms to select snapshots in parameter space as well as in time.
The case of reduced order modeling applied to problems with varying parameters is
a topic of great interest in the ROM community. In this context, incremental SVD
approaches show promise as a limited-memory alternative to POD adaptive snapshot
approaches based on full SVDs or on partial (“chunked”) SVDs.

Another direction of interest would be developing adaptive snapshot selection
algorithms for other data-driven model reduction methods. Of special mention are
methods that generate basis vectors that could then be fed into ROM hyperreduction
methods such as the discrete empirical interpolation method (DEIM) [15] or Gauss-
Newton with approximated tensors (GNAT) [10, 12]. Hyperreduction methods are
noteworthy for reducing the computational complexity (and thus, cost) of evaluating
terms in a ROM originating from nonlinear terms in the FOM nonintrusively – that
is, without requiring an offline/online decomposition or intimate knowledge of the
right-hand side of the FOM.

Adaptive snapshot selection lends itself to the construction of localized ROM
bases, which has been a topic of recent interest; a method for constructing local bases
in time from the adaptive snapshot algorithm in Section 4 is straightforward and a
topic for future work. Constructing local bases in parameter space is also a future
research direction of interest.

Finally, the framework above can be extended straightforwardly to include time

22 Limited memory POD

10
−15

10
−10

10
−5

10
0

0

50

100

150

200

250
Adaptive error control tends to generate slightly larger, more accurate ROMs

Tolerance

R
O

M
 d

im
en

si
on

 (
k)

Adaptive
Equispaced (constant snapshots)
Equispaced (match NRMSE)

Fig. 5.3. Plot of ROM dimension (k) for ROMs generated for the case study via adaptive snap-
shot selection, via equispaced snapshot selection while holding the number of snapshots constant, and
via equispaced snapshot selection while holding the normalized root mean squared error (NRMSE)
approximately constant. Note also that for this case study, as the SVD truncation tolerance εSVD

approaches zero, the ROM dimension approaches the analytical rank of the snapshot matrix. Com-
bined with the trend that as the snapshot selection error tolerance εsnapshot approaches zero, all time
steps are collected, this statement implies that k should approach n. For this case study, n = 201.

derivative snapshots. Including time derivative snapshots [34, 15, 16, 43, 11] (or
instead, difference quotients [31, 36, 37]) is a topic of recent interest because time
derivative information is readily available in ODE simulations, and shows promise
in developing potentially more accurate ROMs, although there is some debate about
how the time derivative snapshots should be scaled. Carlberg and Farhat argue for
scaling sensitivity derivatives based on Taylor series in [11]. However, both Peng and
Mohseni [43] and Chaturantabut and Sorensen [15, 16] do not scale time derivative
snapshots. In the parameter-dependent case, analogous quantities of interest would
also include sensitivity derivatives with respect to the parameters [11].

REFERENCES

[1] R. J. Adrian, K. T. Christensen, and Z.-C. Liu, Analysis and interpretation of instantaneous
turbulent velocity fields, Experiments in fluids, 29 (2000), pp. 275–290.

[2] Athanasios C. Antoulas, Approximation of Large-Scale Dynamical Systems, Advances in
Design and Control, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2005.

[3] William Arrighi, Geoffrey Oxberry, Tanya Vassilevska, and Kyle Chand, libROM User
Guide and Design, tech. report, Lawrence Livermore National Laboratory, 2015.

[4] C.G. Baker, K.A. Gallivan, and P. Van Dooren, Low-rank incremental methods for com-
puting dominant singular subspaces, Linear Algebra and its Applications, 436 (2012),
pp. 2866–2888.

[5] Gal Berkooz, Philip Holmes, and John L. Lumley, The proper orthogonal decomposition in
the analysis of turbulent flows, Annual review of fluid mechanics, 25 (1993), pp. 539–575.

[6] T. Braconnier, M. Ferrier, J.-C. Jouhaud, M. Montagnac, and P. Sagaut, Towards
an adaptive POD/SVD surrogate model for aeronautic design, Computers & Fluids, 40
(2011), pp. 195–209.

[7] Matthew Brand, Incremental singular value decomposition of uncertain data with missing

Limited memory POD 23

Table 5.3

Table of ROM dimension k for ROMs generated for the case study via three different snapshot
selection methods. Data shown here is also plotted in Figure 5.3.

ROM dimension (k) for method
εsnapshot = εSVD Adaptive Equispaced, match

snapshots NRMSE
10−1 8 8 8
10−2 14 13 15
10−3 22 19 34
10−4 29 24 43
10−5 38 30 38
10−6 44 36 43
10−7 56 55 120
10−8 64 84 84
10−9 86 121 199
10−10 125 93 201
10−11 199 201 177
10−12 201 165 201
10−13 201 186 201
10−14 201 186 201
10−15 201 201 201

values, in Computer Vision—ECCV 2002, Springer, 2002, pp. 707–720.
[8] , Fast low-rank modifications of the thin singular value decomposition, Linear Algebra

and its Applications, 415 (2006), pp. 20–30.
[9] Kevin Carlberg, Adaptive h-refinement for reduced-order models, International Journal for

Numerical Methods in Engineering, 102 (2015), pp. 1192–1210.
[10] Kevin Carlberg, Charbel Bou-Mosleh, and Charbel Farhat, Efficient non-linear model

reduction via a least-squares Petrov-Galerkin projection and compressive tensor approxi-
mations, International Journal for Numerical Methods in Engineering, 86 (2011), pp. 155–
181.

[11] Kevin Carlberg and Charbel Farhat, A low-cost, goal-oriented ‘compact proper orthogo-
nal decomposition’ basis for model reduction of static systems, International Journal for
Numerical Methods in Engineering, 86 (2011), pp. 381–402.

[12] Kevin Carlberg, Charbel Farhat, Julien Cortial, and David Amsallem, The GNAT
method for nonlinear model reduction: effective implementation and application to com-
putational fluid dynamics and turbulent flows, Journal of Computational Physics, 242
(2013), pp. 623–647.

[13] Y. Chahlaoui, K. Gallivan, and P. Van Dooren, Recursive Calculation of Dominant Singu-
lar Subspaces, SIAM Journal on Matrix Analysis and Applications, 25 (2003), pp. 445–463.

[14] Younes Chahlaoui and Paul Van Dooren, Model reduction of time-varying systems, in
Dimension reduction of large-scale systems, Springer, 2005, pp. 131–148.

[15] Saifon Chaturantabut and Danny C. Sorensen, Nonlinear Model Reduction via Discrete
Empirical Interpolation, SIAM Journal on Scientific Computing, 32 (2010), pp. 2737–2764.

[16] , A State Space Error Estimate for POD-DEIM Nonlinear Model Reduction, SIAM Jour-
nal on Numerical Analysis, 50 (2012), pp. 46–63.

[17] M. Dihlmann, M. Drohmann, and B. Haasdonk, Model reduction of parametrized evolution
problems using the reduced basis method with adaptive time-partitioning, Proc. of ADMOS,
2011 (2011).

[18] Martin Drohmann and Kevin Carlberg, The ROMES method for statistical modeling of
reduced-order-model error, arXiv preprint arXiv:1405.5170, (2014).

[19] R. D. Falgout, S. Friedhoff, Tz. V. Kolev, S. P. MacLachlan, and J. B. Schroder, Par-
allel Time Integration with Multigrid, SIAM Journal on Scientific Computing, 36 (2014),
pp. C635–C661.

[20] Martin J. Gander, 50 Years of Time Parallel Time Integration, in Householder Symposium

24 Limited memory POD

XIX June 8-13, Spa Belgium, p. 81.
[21] Gene Golub and Charles Van Loan, Matrix Computations, Society for Industrial and Ap-

plied Mathematics, 4th ed., 2013.
[22] Martin A. Grepl and Anthony T. Patera, A posteriori error bounds for reduced-basis

approximations of parametrized parabolic partial differential equations, ESAIM: Mathe-
matical Modelling and Numerical Analysis, 39 (2005), pp. 157–181.

[23] Bernard Haasdonk, Markus Dihlmann, and Mario Ohlberger, A Training Set and Mul-
tiple Basis Generation Approach for Parametrized Model Reduction Based on Adaptive
Grids in Parameter Space, Mathematical and Computer Modelling of Dynamical Systems,
17 (2011), pp. 423–442.

[24] Bernard Haasdonk and Mario Ohlberger, Reduced basis method for finite volume approx-
imations of parametrized linear evolution equations, ESAIM: Mathematical Modelling and
Numerical Analysis, 42 (2008), pp. 277–302.

[25] Ernst Hairer, Gerhard Wanner, and Syvert P. Nørsett, Solving Ordinary Differential
Equations I, no. 8 in Springer Series in Computational Mathematics, Springer, 1993.

[26] Peter Hall, David Marshall, and Ralph Martin, Merging and splitting eigenspace models,
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 22 (2000), pp. 1042–
1049.

[27] , Adding and subtracting eigenspaces with eigenvalue decomposition and singular value
decomposition, Image and Vision Computing, 20 (2002), pp. 1009–1016.

[28] Chris Homescu, Linda R. Petzold, and Serban Radu, Error Estimation for Reduced Order
Models of Dynamical Systems, Technical Report UCRL-TR-201494, Lawrence Livermore
National Laboratory, Dec. 2003.

[29] Chris Homescu, Linda R. Petzold, and Radu Serban, Error Estimation for Reduced-Order
Models of Dynamical Systems, SIAM Journal on Numerical Analysis, 43 (2005), pp. 1693–
1714.

[30] Ronald HW Hoppe and Zhiheng Liu, Snapshot location by error equilibration in proper
orthogonal decomposition for linear and semilinear parabolic partial differential equations,
Journal of Numerical Mathematics, 22 (2014), pp. 1–32.

[31] Traian Iliescu and Zhu Wang, Are the Snapshot Difference Quotients Needed in the Proper
Orthogonal Decomposition?, SIAM Journal on Scientific Computing, 36 (2014), pp. A1221–
A1250.

[32] Irina Kalashnikova and Mathew F. Barone, Stable and efficient Galerkin reduced order
models for non-linear fluid flow, in 6th AIAA Theoretical Fluid Mechanics Conference,
American Institute of Aeronautics and Astronautics, Honolulu, Hawaii, June 2011.

[33] D.A. Knoll and D.E. Keyes, Jacobian-free Newton–Krylov methods: a survey of approaches
and applications, Journal of Computational Physics, 193 (2004), pp. 357–397.

[34] Tanya Kostova, Geoffrey Oxberry, Kyle Chand, and William Arrighi, Error bounds
and analysis of proper orthogonal decomposition model reduction methods using snapshots
from the solution and the time derivatives, arXiv preprint arXiv:1501.02004, (2015).

[35] Heinz-Otto Kreiss and Jens Lorenz, Initial-Boundary Value Problems and the Navier-
Stokes Equations, no. 47 in SIAM Classics in Applied Mathematics, Society for Industrial
and Applied Mathematics, 2004.

[36] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic
problems, Numerische Mathematik, 90 (2001), pp. 117–148.

[37] K. Kunisch and Stefan Volkwein, Galerkin proper orthogonal decomposition methods for
a general equation in fluid dynamics, SIAM Journal on Numerical Analysis, 40 (2002),
pp. 492–515.

[38] Karl Kunisch and Stefan Volkwein, Optimal snapshot location for computing POD basis
functions, ESAIM: Mathematical Modelling and Numerical Analysis, 44 (2010), pp. 509–
529.

[39] Oliver Lass and Stefan Volkwein, Adaptive POD basis computation for parametrized non-
linear systems using optimal snapshot location, Computational Optimization and Appli-
cations, 58 (2014), pp. 645–677.

[40] Randall J. LeVeque, Finite volume methods for hyperbolic problems, vol. 31, Cambridge
university press, 2002.

[41] David J. Lucia, Reduced order modeling for high speed flows with moving shocks, tech. report,
DTIC Document, 2001.

[42] A Paul-Dubois-Taine and David Amsallem, An adaptive and efficient greedy procedure for
the optimal training of parametric reduced-order models, International Journal for Numer-
ical Methods in Engineering, accepted (2014), pp. 1–32.

[43] Liqian Peng and Kamran Mohseni, An Online Manifold Learning Approach for Model Re-

Limited memory POD 25

duction of Dynamical Systems, SIAM Journal on Numerical Analysis, 52 (2014), pp. 1928–
1952.

[44] Sivasankaran Rajamanickam, Efficient Algorithms for Sparse Singular Value Decomposition,
PhD, University of Florida, 2009.

[45] Muruhan Rathinam and Linda R. Petzold, A New Look at Proper Orthogonal Decomposi-
tion, SIAM Journal on Numerical Analysis, 41 (2003), pp. 1893–1925.

[46] Clarence W. Rowley, Tim Colonius, and Richard M. Murray, Model reduction for com-
pressible flows using POD and Galerkin projection, Physica D: Nonlinear Phenomena, 189
(2004), pp. 115–129.

[47] John R. Singler, New POD error expressions, error bounds, and asymptotic results for re-
duced order models of parabolic PDEs, SIAM Journal on Numerical Analysis, 52 (2014),
pp. 852–876.

[48] Sirovich, Lawrence, Turbulence and the dynamics of coherent structures. Part I: coherent
structures, Quarterly of Applied Mathematics, 14 (1987), pp. 561–571.

[49] Răzvan Ştefănescu, Adrian Sandu, and Ionel M. Navon, Comparison of POD reduced
order strategies for the nonlinear 2d shallow water equations, International Journal for
Numerical Methods in Fluids, 76 (2014), pp. 497–521.

[50] Kyle Washabaugh, David Amsallem, Matthew Zahr, and Charbel Farhat, Nonlinear
model reduction for CFD problems using local reduced-order bases, in 42nd AIAA Fluid
Dynamics Conference and Exhibit, Fluid Dynamics and Co-located Conferences, AIAA
Paper, vol. 2686, 2012.

[51] D. Wirtz, D. C. Sorensen, and B. Haasdonk, A Posteriori Error Estimation for DEIM
Reduced Nonlinear Dynamical Systems, SIAM Journal on Scientific Computing, 36 (2014),
pp. A311–A338.

[52] Matthew J. Zahr, David Amsallem, and Charbel Farhat, Construction of parametrically-
robust CFD-based reduced-order models for PDE-constrained optimization, in 21st AIAA
Computational Fluid Dynamics Conference, American Institute of Aeronautics and Astro-
nautics, Reston, Virginia, 2013, pp. 1–11.

